
UNIT - I 

ELECTROSTATICS-1 

Learning objectives: 

 
 To introduce the students to basic concepts of electric field Coulomb’s Law 

 To introduce electric field intensity and its calculations for different charge distributions. 

 

Syllabus: 

Introduction of Electromagnetic fields - Introduction of vector analysis - vector identies - 

divergence and stokes theorems - coordinate systems- Introduction to Electrostatic fields – 

Coulombs law - problems on Coulombs law - Force due to multiple charges - problems on  

multiple charges - Electric field intensity due to a line, Ring and a surface charge  

 

Learning outcomes: 

 
Students will be able to 

 Determine the force between two point charges. 

 Define electric field intensity or electric field strength (𝐸) and derive expression for 

electric field for line charge, circular ring and charged disc. 

 

 

 

 

 

 

 

 

  



 

Learning Material 

 

Charges at rest produce Static Electric Field or Electrostatic field. 

Field: It is the existing space in particular area due to some elements. 

 

Electric field due to isolated positive charge      Electric field due to isolated negative charge  

 

            The lines of force due to a pair of charges, one positive and the other negative 

Coulomb’s Law 

Coulomb states that the force between two point charges separated in a vacuum or free space by 

a distance which is large compared to their size is  

(i) proportional to magnitude of each charge   

(ii) inversely proportional to the square of the distance between them 

(iii)     directed along the line joining the charges 

(iv)     it should be depend up on the medium also. 

 



Let Q1 and Q2 be the two point charges separated by a distance |𝑅12
⃗⃗ ⃗⃗ ⃗⃗  | and F2 be the force 

experienced by Q2 due to Q1 

|𝐹2| 𝛼 
𝑄1𝑄2

|𝑅12|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 

 

Fig. 1.1 If Q1 and Q2 have like signs the vector force 𝑭𝟐 on Q2 is in the same direction as 𝑅𝟏𝟐
⃗⃗ ⃗⃗ ⃗⃗   

|𝐹2| = 𝑘 
𝑄1𝑄2

|𝑅12|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
                                                                                                                                (1.1) 

Where k is the proportionality constant.k = 1/4πε in SI units. The constant ε is known as the 

permittivity of medium (in farads per meter)  

Where ε = ε0εr 

ε0 =absolute permittivity of free space = 8.854×10-12 ≈ 
10−9

36π
  F/m 

εr= Relative permittivity of medium 

    =1 for air or free space 

k = 1/(4πεo) = 9 × 109 

Thus Eq. (1.1) becomes 

|𝐹2| =  
1

4𝜋ε

𝑄1𝑄2

|𝑅12|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
                                                                                                                              (1.2) 

If point charges Q1and Q2are located at points, then the force F2 on Q2due to Q1, shown in Figure 

1.1, is given by 

𝐹2
⃗⃗  ⃗ =  |𝐹2|*𝑎𝑹𝟏𝟐

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

𝐹2
⃗⃗  ⃗ =  

1

4𝜋ε

𝑄1𝑄2

|𝑅12|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑎𝑹𝟏𝟐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                                                                                          (1.3) 

Where  

𝑎𝑹𝟏𝟐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

𝑅12
⃗⃗ ⃗⃗ ⃗⃗  

|𝑅12
⃗⃗ ⃗⃗ ⃗⃗  |

= 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑄1𝑡𝑜 𝑄2                                           (1.4) 

By substituting eq. (1.4) into eq. (1.3), we may write eq. (1.3) as 



𝐹2
⃗⃗  ⃗ =  

1

4𝜋𝜀

𝑄1𝑄2

|𝑅12|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑅12
⃗⃗ ⃗⃗ ⃗⃗            𝑁                                                                                                       (1.5) 

In air or free space 𝐹2
⃗⃗  ⃗ =  

1

4𝜋𝜀0

𝑄1𝑄2

|𝑅12|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑅12
⃗⃗ ⃗⃗ ⃗⃗   = 9 × 109 𝑄1𝑄2

|𝑅12|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑅12
⃗⃗ ⃗⃗ ⃗⃗    N 

Similarly the force F1 on Q1 due to Q2 is given by 

𝐹1
⃗⃗  ⃗ =  

1

4𝜋𝜀

𝑄1𝑄2

|𝑅21|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑅21
⃗⃗ ⃗⃗ ⃗⃗            𝑁 

𝐹1
⃗⃗  ⃗ =  −

1

4𝜋𝜀

𝑄1𝑄2

|𝑅12|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑅12
⃗⃗ ⃗⃗ ⃗⃗      = −𝐹2

⃗⃗  ⃗ 

𝐹1
⃗⃗  ⃗ = −𝐹2

⃗⃗  ⃗                                                                                                                                       (1.6) 

Limitations of Coulombs law: 

1. The coulombs law is only applicable for point charges. 

2. They should be stationary with respect to each other. 

3. Force between two point charges can be determined in only single medium. 

Force due to 'N' no. of charges: 

If we have more than two point charges, we can use the principle of superposition to determine 

the force on a particular charge. The principle states that if there are 'n'charges Q1, Q2, 

Q3..................... Qnlocated, respectively, at points with position vectors𝑹𝟏𝒑, 𝑹𝟐𝒑, 𝑹𝟑𝒑 ……………𝑹𝒏𝒑 , 

the resultant force 𝑭 on a charge Qlocated at point(p)is the vector sum of the forces exerted on 

Qby each of the charges Q1, Q2, Q3..................... Qn.Hence: 

𝑭 = 𝐹1
⃗⃗  ⃗ + 𝐹2

⃗⃗  ⃗ + ⋯+ 𝐹𝑛
⃗⃗  ⃗ 

𝑭 = 
1

4𝜋𝜀𝑜

𝑄𝑄1

|𝑅1𝑝|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑅1𝑝
⃗⃗ ⃗⃗ ⃗⃗  +

1

4𝜋𝜀𝑜

𝑄𝑄2

|𝑅2𝑝|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑅2𝑝
⃗⃗ ⃗⃗ ⃗⃗  + ⋯+

1

4𝜋𝜀𝑜

𝑄𝑄𝑛

|𝑅𝑛𝑝|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑅𝑛𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗                                     (1.7) 

 

𝑭 = 
𝑄

4𝜋𝜀𝑜
∑

𝑄𝑖

|𝑅𝑖𝑝|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑅𝑖𝑝
⃗⃗⃗⃗⃗⃗ 

𝑁

𝑖=1

                                                                                                                 (1.8) 

𝑭 =  9 × 109 𝑄 ∑
𝑄𝑖

|𝑅𝑖𝑝|3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑅𝑖𝑝
⃗⃗⃗⃗⃗⃗ 

𝑁

𝑖=1

                                                                                                      (1.9) 



Electric Field Intensity or Electric Field Strength (𝑬𝑭𝑰): 

It is the force per unit charge. 

 

Fig 1.2 The lines of force due to a pair of charges, one positive and the other negative 

 

Fig 1.3 The lines of force due to a pair of positive charges 

 

Electric field due to isolated positive charge & negative charge 

 

An electric field is said to exist if a test charge kept in the medium which is at a distance |𝑅𝑡
⃗⃗⃗⃗ |, 

then it will experience a force Ft. 

A point charge kept at the origin. Consider a point P which is at a distance |𝑅𝑡
⃗⃗⃗⃗ | meters from the 

origin. A small test charge Qt placed at the point P, then it experience a force Ft 



 

Electric field intensity is defined mathematically as  

𝑬 = lim
𝑄𝑡→0

𝑭𝒕

𝑄𝑡
                                                                                                                                       (1.10) 

or simply 

𝑬 =
𝑭𝒕

𝑄𝑡
                                                                                                                                              (1.11) 

The electric field intensity 𝑬 is obviously in the direction of the force 𝑭 and is measured in 

newton/coulomb or volts/meter. From the above figure the force experienced by the test charge 

Qt is given by 

Ft =  
1

4πε

QQt

|Rt|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
aRt
⃗⃗ ⃗⃗  ⃗ 

then electric field is 

𝐸 =
𝑭𝒕

𝑄𝑡
= 

1

4𝜋𝜀

𝑄

|𝑅𝑡|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑎𝑹𝒕
⃗⃗⃗⃗⃗⃗  

𝑬 = 
1

4𝜋𝜀

𝑄

|𝑅𝑡|2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑎𝑹𝒕
⃗⃗⃗⃗⃗⃗                                                                                                                       (1.12) 

Electric field due to N no. of charges: 

If we have more than two point charges, we can use the principle of superposition to determine 

the force on a particular charge. The resultant force 𝑭 on a charge Qlocated at point(p) is the 

vector sum of the forces exerted on Qby each of the charges Q1, Q2, Q3..................... Qn.Hence: 

𝑭 = 𝑭𝟏 + 𝑭𝟐 + ⋯+ 𝑭𝒏 

 

From eq. (1.9) 

𝑭 =  9 × 109 𝑄 ∑
𝑄𝑖

𝑅3
𝑖𝑝

𝑹𝒊𝒑

𝑁

𝑖=1

 

We know that 



𝑬 =
𝑭

𝑄
 

𝑬 = 9 × 109 ∑
𝑄𝑖

𝑅3
𝑖𝑝

𝑹𝒊𝒑

𝑁

𝑖=1

                                                                                                     (1.13) 

ELECTRIC FIELDS DUE TO CONTINUOUS CHARGE DISTRIBUTIONS: 

So far we have only considered forces and electric fields due to point charges, which are 

essentially charges occupying very small physical space. It is also possible to have continuous 

charge distribution along a line, on a surface, or in a volume as illustrated in figure 1.2. 

 

Fig. 1.4 volume charge distribution and charge elements 

It is customary to denote the line charge density, surface charge density, and volume 

charge density by λ(in C/m), σ(in C/m2), and ρv(in C/m3), respectively. 

Line charge density: when the charge is distributed over linear element, then the line charge 

density is the charge per unit length. 

λ = lim
𝑑𝑙→0

𝑑𝑞

𝑑𝑙
 

Wheredq is the charge on a linear element dl. 

Surface charge density: when the charge is distributed over surface, then the surface charge 

density is the charge per unit area. 

σ = lim
𝑑𝑠→0

𝑑𝑞

𝑑𝑠
 

Wheredq is the charge on a surface element ds. 

Volume charge density: when the charge is confined within a volume, then the volume charge 

density is the charge per unit volume. 



ρ
v
= lim

𝑑𝑣→0

𝑑𝑞

𝑑𝑣
 

Wheredq is the charge contained in a volume element dv. 

Electric field due to line charge: 

Consider a uniformly charged wire of length L m, the charge being assumed to be 

uniformly distributed at the rate of λ (linear charge density) c/m. Let P be any point at which 

electric field intensity has to be determined. 

 Consider a small elemental length dx at a distance x meters from the left end of 

the wire, the corresponding charge element is λ dx. Divide the wire into a large number of such 

small elements, each element will render its contribution towards the production of field at P. 

 

Fig 1.5 Evaluation E due to line charge 

Let dE be field due to the charge element λ dx. It has a component dEx along x-axis and 

dEyalong y-axis. 

dE = dExax + dEyay 

we know that 

𝑑𝐸 =
λ dx

4𝜋𝜀𝑜𝑟2
(1.14) 

From figure 1.5 we can write, 

dEx = dEcos𝜃                 (1.15) 

dEy = dE sin𝜃                            (1.16) 

Therefore we can write, 



𝑑𝐸𝑥 =
λ cosθ dx

4𝜋𝜀𝑜𝑟2
(1.17) 

𝑑𝐸𝑦 =
λ sinθ dx

4𝜋𝜀𝑜𝑟2
(1.18) 

Substitutingeqs. (1.17) and (1.18) in dEwe get, 

𝑑𝑬 =
λ cosθ dx

4𝜋𝜀𝑜𝑟2
𝒂𝒙 + 

λ sinθ dx

4𝜋𝜀𝑜𝑟2
𝒂𝒚(1.19) 

From figure 1.5 we write 

L1-x = h cot𝜃       (1.20) 

-dx = -h cosec2𝜃 d𝜃                         (1.21) 

r = h cosec𝜃       (1.22) 

Substituting equations (1.20), (1.21) and (1.22) in (1.19), we get 

𝑑𝑬 =
λ cosθ dθ

4𝜋𝜀𝑜ℎ
𝒂𝒙 + 

λ sinθ dθ

4𝜋𝜀𝑜ℎ
𝒂𝒚     (1.23) 

The electric field intensity E due to whole length of the wire 

𝑬 = ∫ 𝑑𝑬 𝑑𝜃

𝜽=𝝅−𝜶𝟐

𝜽=𝜶𝟏

 

𝑬 = ∫ [
λ cosθ dθ

4𝜋𝜀𝑜ℎ
𝒂𝒙 + 

λ sinθ dθ

4𝜋𝜀𝑜ℎ
𝒂𝒚] 𝑑𝜃

𝜽=𝝅−𝜶𝟐

𝜽=𝜶𝟏

 

𝑬 =
𝜆

4𝜋𝜀𝑜ℎ
[𝑠𝑖𝑛𝜃 𝒂𝒙 − 𝑐𝑜𝑠𝜃 𝒂𝒚]𝜶𝟏

𝝅−𝜶𝟐
 

𝑬 =
𝜆

4𝜋𝜀𝑜ℎ
[(𝑠𝑖𝑛𝛼2 − 𝑠𝑖𝑛𝛼1)𝒂𝒙 + (𝑐𝑜𝑠𝛼2 + 𝑐𝑜𝑠𝛼1) 𝒂𝒚]

𝑁

𝐶
                                            (1.24) 

Case (i) 

If P is the midpoint, α1= α2 = α  

𝑬 =
𝜆

4𝜋𝜀𝑜ℎ
[(𝑠𝑖𝑛 𝛼 − 𝑠𝑖𝑛 𝛼)𝒂𝒙 + (𝑐𝑜𝑠 𝛼 + 𝑐𝑜𝑠 𝛼) 𝒂𝒚]

𝑁

𝐶
 

𝑬 =
𝜆

4𝜋𝜀𝑜ℎ
[2 𝑐𝑜𝑠 𝛼 𝒂𝒚]

𝑁

𝐶
 

𝑬 =
𝜆

2𝜋𝜀𝑜ℎ
𝑐𝑜𝑠 𝛼 𝒂𝒚

𝑁

𝐶
   (1.25) 



The direction of electric field intensity is normal to the line charge. The electric field is not 

normal to the line charge if the point is not at midpoint. 

Case (ii) 

As length tendsto  

α1 = 0 and α2 = 0 

From equation (1.24), we get 

𝑬 =
𝜆

2𝜋𝜀𝑜ℎ
𝒂𝒚

𝑁

𝐶
                                                                                                                         (1.26) 

Electrical field due to charged ring: 

A circular ring of radius ‘a’carries a uniform charge λC/m and is placed on the xy-plane with 

axis the same as the z-axis as shown in figure. 

Let dE be the electric field intensity due to a charge dQ. The ring is assumed to be formed by 

several point charges. When these vectors are resolved, radial components get cancelled and 

normal components get added. Therefore the direction of electric field intensity is normal to the 

plane of the ring. The sum of normal components can be written as  

 

 

Fig. 1.6 charged ring 

𝑬 = ∫𝑑𝐸𝑐𝑜𝑠𝛼 𝒂𝒛 

𝑬 = ∫
𝑑𝑄

4𝜋𝜀𝑜𝑅2
𝑐𝑜𝑠 𝛼 𝒂𝒛 

𝑬 = ∫
𝜆 𝑑𝑙

4𝜋𝜀𝑜𝑅2

ℎ

𝑅
𝒂𝒛 

∞ 



𝑬 =
𝜆 ℎ

4𝜋𝜀𝑜𝑅3
𝒂𝒛 ∫𝑑𝑙 

  

𝑬 =
𝜆 ℎ

4𝜋𝜀𝑜𝑅
3
 × 2𝜋𝑎 𝒂𝒛 

𝑬 =
𝜆 ℎ

4𝜋𝜀𝑜√𝑎2 + ℎ2
3  × 2𝜋𝑎 𝒂𝒛 

𝑬 =
𝜆 𝑎 ℎ

2𝜀𝑜(𝑎
2 + ℎ2)3/2

𝒂𝒛

N

C
(1.27) 

Electrical field due to a charged disc: 

A disc of radius ‘a’ meters is uniformly charged with a charged density σ c/m2. It is required to 

determine the electric field at ‘P’ which is at a distance h meters from the centre of the disc as 

shown in figure 1.7  

 

                  Fig. 1.7 charged disc 

The disc is assumed to be formed by several rings of increasing radius. Consider a ring of radius 

x meters. Each ring is assumed to be formed by number of point charges. 

Let dE1 be the electric field intensity due to a charge dQ1 and dE2 is the electric field intensity 

due to a charge dQ2.  

Electric field due to one ring be obtained by adding normal components of dE1, dE2 ....... dEn. 

Therefore  

dE = (dE1cos𝜃 + dE2 cos𝜃 + ....... + dEncos𝜃 ) az 

dE = (dE1 + dE2  + ....... + dEn) cos𝜃az 



dE = (
𝑑𝑄1

4𝜋𝜀𝑟2 + 
𝑑𝑄2

4𝜋𝜀𝑟2 + ....... + 
𝑑𝑄𝑛

4𝜋𝜀𝑟2) cos𝜃az 

dE = 
𝑑𝑄1+𝑑𝑄2+⋯+𝑑𝑄𝑛

4𝜋𝜀𝑟2 cos𝜃az 

dE =  
𝑑𝑄

4𝜋𝜀𝑟2cos𝜃az 

The total charge of the ring is σ ds which is equal to dQ 

dE= 
σ ds

4𝜋𝜀𝑟2cos𝜃az(1.28) 

ds = π[(x + dx)2 – x2] 

ds = π[x2 + dx2 + 2xdx – x2] = 2π x dx          (neglecting  dx2  term) 

Substituting ds in eq. (1.28) , we get 

dE =  
σ 2πxdx

4𝜋𝜀𝑟2 cos𝜃az 

dE =  
σ xdx

2𝜀𝑟2cos𝜃az(1.29) 

From above figure we can write 

Tan𝜃 = x/h 

x = h tan𝜃          (1.30) 

dx = h sec2𝜃 d𝜃         (1.31) 

cos𝜃 = h/r 

r = h/ cos𝜃 = h sec𝜃         (1.32) 

Substituting equations (1.30), (1.31) and (1.32)  in (1.29) we get, 

dE =  
σ ( h tanθ)(h sec2θ dθ)

2𝜀h secθ
2 cos𝜃az 

dE =  
σ 

2𝜀
 sin𝜃 d𝜃az 

On integrating 

𝑬 =
𝜎

2𝜀
∫ 𝑠𝑖𝑛𝜃

𝛼

0

 𝑑𝜃 𝒂𝒛 

𝑬 =
𝜎

2𝜀
[−𝑐𝑜𝑠𝜃]0

𝛼𝒂𝒛 

𝑬 =
𝜎

2𝜀
(1 − 𝑐𝑜𝑠𝛼)𝒂𝒛     (1.33) 

From figure 1.7 



𝑐𝑜𝑠𝛼 =
ℎ

√(𝑅2 + ℎ2)
 

∴ 𝑬 =
𝜎

2𝜀
(1 −

ℎ

√(𝑅2 + ℎ2)
) 𝒂𝒛

𝑁

𝐶
                                                                                         (1.34) 

For infinite disc, radius ‘R’ tends to infinite and α = 90. 

𝑬 =
𝜎

2𝜀
(1 − 𝑐𝑜𝑠 90)𝒂𝒛 

𝑬 =
𝜎

2𝜀
𝒂𝒛

𝑁

𝐶
𝑜𝑟

𝑉

𝑚
                                                                                                                       (1.35) 

From equation (1.35), it can be seen that electric field due to infinite disc is independent of 

distance. Electric field is uniform. 

 



ELECTROSTATICS-II 

Learning objectives: 

 
 To introduce Gauss’s law with its applications 

 To familiarize students work done in moving a point charge, Electric Potential and Potential 

gradient 

 

Syllabus: 

Gauss’s law, Max well’s First equation, Div (D) = ρV. Application of Gauss’s Law, Problems on 

Gauss's law, Work done in moving a point charge in an Electrostatic field. Electric potential, 

Properties of a potential function, Electric potential gradient 

 

Learning outcomes: 

 
Students will be able to 

 

 Apply Gauss law for finding EFI and Electric flux density 

 Determine the work done by a point charge placed in electric field.. 

 Define electric potential and potential difference and derive expressions potential and potential 

difference for line charge, circular ring and charged disc. 

 Evaluate the electric field from potential (Potential gradient) 

 

 

  



ELECTROSTATICS-II 

Electric flux (or) displacement flux: 

The total number of lines of force in any particular electric field is called electric flux. It is denoted by 

symbol Ψ. Similar to the charge the unit of electric flux is also coulomb. 

Properties of Electric flux lines: 

The electric flux is nothing but the lines of force, around a charge. Such electric flux lines have the 

following properties 

1. Electric flux lines start from positive charge and terminate on the negative charge as shown in 

fig 2.1 

 
Fig 2.1 Flux lines 

 

2. If the negative charge is absent, then the total flux lines terminate at ∞ as shown in fig 2.2(a). 

While in absence of positive charge, the electric flux lines terminates on the negative charge 

from ∞ as shown in fig 2.2(b) 

 

Fig 2.2 

3. If there are more number of flux lines i.e crowding of flux lines the E is stronger. 

4. Electric flux lines are parallel and never cross each other. 

5. The electric flux lines are independent of medium in which charges are placed. 

6. The electric flux lines always enter or leave the charged surface normally. 



Electric flux density (or) displacement flux density: 

The net flux passing normal through the surface per unit area is called electric flux density. It is 

denoted as 𝐷̅. It has a specific direction which is normal to the surface area under consideration hence 

it is a vector field.  

𝐷̅ =
𝛹

𝐴
𝑎𝑟⃗⃗⃗⃗  

  Where Ψ = Flux passing through the surface. 

              A = Surface area. 

𝑎𝑟⃗⃗⃗⃗ = Unit vector normal to the plane of surface. 

The units of D are C/m2.  

D due to a point charge Q: 

Consider a point charge +Q placed at the centre of the imaginary sphere of radius r as shown in fig 2.3. 

 The flux lines originating from the point charge +Q are directed radially outwards. The magnitude of 

flux density at any point on the surface is,  

 

Fig 2.3 

|𝐷|̅̅ ̅̅ =
𝑇𝑜𝑡𝑎𝑙𝑓𝑙𝑢𝑥𝛹

𝑇𝑜𝑡𝑎𝑙𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑎𝑟𝑒𝑎𝐴
 

But Ψ = Q and A= 4πr2 

𝐷̅ =
𝑄

4𝜋𝑟2 𝑎𝑟⃗⃗⃗⃗ C/m2. 

 



Relation between 𝑫̅and 𝑬̅ : 

Consider a charge is kept at the origin or centre of spherical cell, the electric field on the surface of 

spherical cell is given by  

𝐸̅ =
𝑄

4𝜋𝜀𝑟2
𝑎𝑟⃗⃗⃗⃗  

The electric flux density on the surface of spherical cell is given by  

𝐷̅ =
𝑄

4𝜋𝑟2
𝑎𝑟⃗⃗⃗⃗  

Dividing equations of D̅ and E̅ we get  

𝐷̅

𝐸̅
=  𝜀 

𝐷̅ = 𝜀𝐸̅ 

Gauss’s Law: 

Statement : “The total normal electric flux over a closed surface in an electric field is equal to the 

total charge enclosed by that surface “. 

(or) 

Flux coming out of a charged body is equal to the amount of charge contained by that body. 

 Mathematically it may be expressed as 

∫𝐷. 𝑑𝑠 = Q   

Where Q is the total charge enclosed. The surface over which the integral is taken is called Gaussian 

surface. 

Proof: Consider a point Q kept at the origin as shown in figure. Consider point P at a distance r m from 

the origin. The displacement density at this point is D. The direction of vector ds is normal to the area. 

 



Let the flux through the area dS be dΨ. 

Displacement flux density 𝐷 =
𝑑𝛹

𝑑𝑆
 

dΨ = D dS 

Total flux coming out of the spherical surface can be obtained by integration 

∫𝑑𝛹 = ∫𝐷. 𝑑𝑆 

Ψ = ∬𝐷.𝑑𝑆 

From faraday’s experiment we know that 

𝐷 = 
𝑄

4𝜋𝑟2
 

Ψ = ∬
𝑄

4𝜋𝑟2 𝑑𝑆 

Total surface area 4πr2 

𝛹 =
𝑄

4𝜋𝑟2 𝑋4𝜋𝑟2= Q 

Therefore Ψ = Q 

Applications of Gauss’s law: 

It is used to find the value of electric field intensity E and Electric flux density D. Construct an imaginary 

surface such that electric field is uniform and it is normal to the surface at every point such surface is called 

Gaussian surface. Apply Gauss’s law to the Gaussian surface. 

Electric field due to point charge: 

Construct a Gaussian surface of radius r and apply Gauss’s law 

Ψ = Q 

∫𝐷. 𝑑𝑆 = 𝑄 

D∫𝑑𝑆 = 𝑄 

D.4πr2=Q 

𝐷 = 
𝑄

4𝜋𝑟2
 

𝐸 =  
𝑄

4𝜋𝜀𝑟2
 



Electric field intensity due to infinite line charge: 

 
Fig : Infinite Line Charge 

Consider a cylindrical surface of radius r m and height L m. The line charge can be assumed to be formed by 

several point charges. Therefore direction of resultant electric field vector is normal to the line charge. 

Applying Gauss’s law  

Ψ = Q 

Ψ1+Ψ2+Ψ3 = Q 

Flux coming out of surfaces 2 and 3 is zero 

Since flux is purely normal (∫𝐷. 𝑑𝑠 = 0). Since angle between them is 900 

D 2πrl=λl 

D= λ/2πr 

𝐷̅

𝐸̅
=  𝜀 

𝐸 =
𝐷

𝜀
=

𝜆

2𝜋𝜀𝑟
 

Electric field due to infinite charged disc: 

 



Consider an infinite disc of surface charge density σ c/m2. The E for this infinite disc is always normal to the 

plane of surface. 

Construct a pill box as shown in fig and apply Gauss’s law to pillbox. 

Ψ=Q 

Ψtop+Ψbottom+Ψsides=σdS 

Flux from the sides is zero because the E and surface is perpendicular to each other. 

Ψtop+Ψbottom=σdS 

Dds+Dds = σdS 

D= σ/2 

E= D/ε 

E= σ /2ε ar 

E due to infinite disc is independent of distance. 

Gauss’s law cannot be applied to finite disc because E is not uniform. 

Poisson’s and Laplace’s Equations: 

From the Gauss law we know that  

∫𝐷. 𝑑𝑠 = Q     (1) 

A body containing a charge density ρ uniformly distributed over the body. Then charge of that body is 

given by  

Q = ∫𝛒𝑑𝑣     (2) 

∫𝐷. 𝑑𝑠  = ∫𝛒𝑑𝑣    (3) 

This is integral form of Gauss law. 

As per the divergence theorem  

∫𝐷. 𝑑𝑠  =  ∫𝛁. 𝐃𝑑𝑣   (4) 

𝛁.𝐃 =  𝛒    (5) 

This is known as point form or vector form or polar form. This is also known as Maxwell’s first 

equation. 

D = ƐE  (6) 

https://en.wikipedia.org/wiki/Latin_epsilon


𝛁.ƐE = ρ 

𝛁. E = 𝝆/Ɛ    (7) 

We know that E is negative potential medium 

E = -𝛁𝐕    (8) 

From equations 7 and 8 

𝛁. (–𝛁𝐕) = 𝝆/Ɛ 

𝛁2V = - 𝝆/Ɛ    (9) 

Which is known as Poisson’s equation in static electric field. 

Consider a charge free region (insulator) the value of ρ = 0, since there is no free charges in dielectrics 

or insulators. 

𝛁2V = 0 

This is known as Laplace’s equation. 

Cartesian coordinate system 

𝛁2V = 
𝜕2

𝜕𝑥
V 

Work Done: 

If a point charge ‘Q’ is kept in an electric field it experiences a force F in the direction of 

electric field. Fa is the applied force in a direction opposite to that of F.  

Let dw be the work done in moving this charge Q by a distance dl m. Total work done in 

moving the point charge from ‘a’ to ‘b’ can be obtained by integration. 

 

https://en.wikipedia.org/wiki/Latin_epsilon
https://en.wikipedia.org/wiki/Latin_epsilon
https://en.wikipedia.org/wiki/Latin_epsilon


𝑊 = ∫𝑑𝑤 

𝑊 = ∫𝑭𝒂 ∙  𝒅𝒍 

𝑊 = −∫ 𝑭 ∙  𝒅𝒍
𝑏

𝑎

                                                                                              (1.36) 

E = F/Q 

F = E Q 

𝑊 = −∫ 𝑬 𝑄 ∙  𝒅𝒍
𝑏

𝑎

 

𝑊 = −𝑄∫ 𝑬 ∙  𝒅𝒍
𝑏

𝑎

                                                                                 (1.37) 

E = Exax+ Eyay+ Ezaz 

dl = dx ax+ dyay+ dzaz 

E  dl = EX dx + Eydy+ Ezdz 

∴ 𝑊 = −𝑄 ∫ (Exdx + Eydy + Ezdz)
(𝑥2,𝑦2 ,𝑧2)

(𝑥1,𝑦1,𝑧1)

                                            (1.38) 

Absolute Potential: 

Absolute potential is defined as the work done in moving a unit positive charge from infinite 

to the point against the electric field. 

A point charge Q is kept at an origin as shown in figure. It is required to find the potential at 

‘b’ which is at distance ‘r’ m from the reference. 

 



Consider a point R1 at a distance ‘x’ m. The small work done to move the charge from R1 to P1 

is dw. The electrical field due to a point charge Q at a distance ‘x’ m is 

𝑬 = 𝑄/(4𝜋𝜀𝑥2) 

Work done = E• dx 

Total work done can be obtained by integration  

Work done (W) =  − Q∫ 𝐄 ∙ d𝐥
b

a
 

V= − 1 ∫ 𝐄 ∙ d𝐥
b

a
 

V = −∫ 𝐄 ∙ d𝐥
b

a

 

E = Exax ,   dl = dx ax  

 

V = −∫
𝑄

4𝜋𝜀𝑥2
 𝑑𝑥

b

a

 

𝑉 =
𝑄

4𝜋𝜀𝑟
                                                                                                                                           (1.39) 

Potential Difference: Vab 

Potential difference Vab is defined as the work done in moving a unit positive charge from ‘b’ 

to ‘a’. 

 



 Consider a point charge Q kept at the origin of a spherical co-ordinate system. The field 

is always in the direction of ar. No field in the direction of 𝜃 and ϕ. The points ‘a’ and ’b’ are 

at distance ra and rb respectively as shown in figure. 

Vab = −∫ 𝐄 ∙ d𝐥
a

b

 

E = Erar ,dl = drar and E.dl= Erdr 

Vab = −∫ Erdr

a

b

 

Vab = −∫
𝑄

4𝜋𝜀𝑟2
 dr

ra

rb

 

Vab =  
𝑄

4𝜋𝜀
[
1

𝑟𝑎
−

1

𝑟𝑏
] 

Vab =  
𝑄

4𝜋𝜀

1

𝑟𝑎
−

𝑄

4𝜋𝜀

1

𝑟𝑏
 

Vab = Va − 𝑉𝑏                                                                                                                                   (1.40) 

Potential difference due to line charge: 

The wire is uniformly charged with λ C/m. We have to find the potential difference Vab due to 

this line charge. Consider a point P at a distance P from the line charge. 

 

Fig. Line charge 



E = Eρaρ 

dl = dρaρ 

E•dl = Eρaρ • dρaρ= Eρdρ 

Potential difference Vab is the work done in moving a unit +ve charge from ‘b’ to ‘a’. 

Vab = −∫ 𝐄 ∙ d𝐥
a

b

 

Vab = −∫ Eρ dρ
a

b

 

Vab = −∫
𝜆

2𝜋𝜀𝜌
 dρ

ρa

ρb

 

Vab =
𝜆

2𝜋𝜀
ln

𝜌𝑏

𝜌𝑎
                                                                                                                             (1.41) 

Potential due to charged ring:  

A thin wire is bent in the form of a circular ring as shown in figure. It is uniformly charged 

with a charge density λ C/m. It is required to determine the potential at height ‘h’ meters from 

the centre of the ring. The ring is assumed to be formed by several point charges. 

 

Fig. Charged ring 

 Let dv be the potential due to the charge element of length dl containing a charge dQ. 

𝑑𝑣 =
𝑑𝑄

4𝜋𝜀𝑟
 

𝑑𝑣 =
𝜆𝑑𝑙

4𝜋𝜀𝑟
 



𝑉 = ∫
𝜆𝑑𝑙

4𝜋𝜀𝑟
 

𝑉 =
𝜆

4𝜋𝜀𝑟
∫𝑑𝑙 

𝑉 =
𝜆

4𝜋𝜀𝑟
 2𝜋𝑎                                                                                                                                              

𝑉 =
𝜆𝑎

2𝜀𝑟
 

𝑉 =
𝜆𝑎

2𝜀√𝑎2 + 𝑏2
  𝑣𝑜𝑙𝑡𝑠                                                                                                                  (1.42) 

Potential due to a charged disc: 

let dv be the potential due to one ring. Each ring is assumed to be having several point charges 

dQ1, dQ2, ............dQn. Potential due to the entire ring is the sum of potential values due to each 

point charge. 

 

Fig. Charge disc 

𝑑𝑣 =
𝑑𝑄1

4𝜋𝜀𝑟
+ 

𝑑𝑄2

4𝜋𝜀𝑟
+ …………… .+ 

𝑑𝑄𝑛

4𝜋𝜀𝑟
 

𝑑𝑣 =
𝑑𝑄1 + 𝑑𝑄2 + …… . . + 𝑑𝑄𝑛

4𝜋𝜀𝑟
 

𝑑𝑣 =
𝑑𝑄

4𝜋𝜀𝑟
 

𝑑𝑣 =
𝜎 𝑑𝑠

4𝜋𝜀𝑟
 =

𝜎 2𝜋𝑥 𝑑𝑥

4𝜋𝜀𝑟
 =

𝜎 𝑥 𝑑𝑥

2𝜀𝑟
 

Potential due to entire disc can be obtained by integration  

𝑉 = ∫𝑑𝑣 = ∫
𝜎 𝑥 𝑑𝑥

2𝜀𝑟

𝑎

0

 =
𝜎 

2𝜀
∫

𝑥

√𝑥2 + ℎ2

𝑎

0

 𝑑𝑥                                                                                 



Let  𝑥2 + ℎ2 = 𝑡2 

2x dx = 2t dt 

Therefore we have 

𝑉 =
𝜎 

2𝜀
∫

𝑡 𝑑𝑡

𝑡

√𝑎2+ℎ2

ℎ

 

𝑉 =
𝜎 

2𝜀
∫ 𝑑𝑡

√𝑎2+ℎ2

ℎ

 

𝑉 =
𝜎 

2𝜀
(√𝑎2 + ℎ2 −  ℎ)  𝑣𝑜𝑙𝑡𝑠                                                                                                  (1.43) 

At the centre of the disc , h=0; 

𝑉 =
𝜎𝑎 

2𝜀
  𝑣𝑜𝑙𝑡𝑠                                                                                                                                 (1.44) 

Relation between V and E: 

Consider a point charge Q at the origin as shown in figure. Electric field due to this charge at 

the point ‘P’ is  

𝑬 =
𝑄

4𝜋𝜀𝑟2
𝒂𝒓 

Consider  

    𝛁 (
1

𝑟
) = (

𝜕

𝜕𝑟
𝒂𝒓 + ………)(

1

𝑟
)  

𝛁 (
1

𝑟
) = − (

1

𝑟2
)𝒂𝒓 

Using above expression in E , we get 

𝑬 =
𝑄

4𝜋𝜀
− 𝛁 (

1

𝑟
) 

𝑬 = −𝛁
𝑄

4𝜋𝜀
(
1

𝑟
) 

Therefore, 

𝑬 = −𝛁 𝑉 

 

 



UNIT - III 

Electric Dipole: 

It is defined as two equal and opposite charges separated by a small distance. 

Electric Dipole moment: 

It is defined as product of charge Q and distance between the two charges. It is a vector since length 

is in vector, length vector is directed from negative to positive charge, therefore dipole moment is 

from negative to positive charge. 

m = Ql 

l = l ur 

ur is unit vector directed from negative to positive charge. The unit of dipole moment is Cm 

Potential due to electric dipole: 

we have to find the potential at P which is at a distance r from the centre of the dipole. The distance 

from +Q and –Q to the point P are r1 and r2 

r1 = r - 
𝑙

2
 cos𝜃 

r2 = r + 
𝑙

2
 cos𝜃 

Let V1 be the potential due to +q, V2 be the potential due to –Q. 

V1 = 
𝑄

4𝜋𝜀𝑟1
 

V2 = 
−𝑄

4𝜋𝜀𝑟2
 

By the superposition theorem, total potential due to dipole  

V = V1+V2 

V = 
𝑄

4𝜋𝜖

𝑟2−𝑟1

𝑟1𝑟2
 

r2 – r1 = l cos𝜃 

r2r1 = r2 

V = 
Ql cos𝜃

4𝜋𝑟2
 

M is magnetic dipole moment 

We know that  

E = -𝛁𝐕 



Torque experienced by Dipole in uniform Electric Field: 

There are two charges +Q and –Q forming a dipole, placed in uniform E. Each charge will 

experience a force equal in magnitude QE but oppositely directed and resultant force experienced 

by dipole zero because as F1 and F2 neutralize each other but these forces form a couple whose 

torque is equal to magnitude  oppose into perpendicular distance between the couple charges. 

T = dxF 

sin𝜃 = d/l 

d = l sin𝜃 

T = l sin𝜃 . F 

T = Ql sin𝜃 . E 

T=mxE 

The torque is maximum when E and dipole moment are perpendicular to each other. The torque is 

minimum when E and dipole moment are parallel. So we conclude that dipole in uniform E does 

not experience translational forces. It experiences a force tending aligned the dipole axes with the 

E. 

Current and current density: 

Current through a given area is the electric charge passing through the area per unit time. 

I = - 
𝑑𝑄

𝑑𝑡
 

‘-‘ indicates the opposite direction of electrons to the current. 

Conduction current or Drift current: 

The current flow due to the flow of free electrons in the conductor under the influence of applied 

voltage is called drift current. It obeys Ohms law. 

Convection Current or displacement current: 

The current due to the flow of charge under the influence of electric field is called convection 

current. It does not obey Ohms law. 

Diffusion Current: 

The current due to the movement of free electrons and free holes in semi conductor is called 

diffusion current. 



Current Density: 

The amount of current passing through a conductor is normal to the area of cross section / unit area 

is called current density. It is given by J. 

When a steady current is passing through conductor, the current density is uniform and conduction 

has uniform cross section but J is different at different points if the conduction is non uniform cross 

section. The current density is represented by vector J. The unit is A/m2 

J =  lim
𝑠→Δ𝑠

Δ𝐽

Δ𝑆
 

=  I/S 

   = dI/dS 

dI = J dS 

I = ∫ 𝐽. 𝑑𝑆 

Depending upon the current is produced there are 2 types of J 

1. Conduction current density or point form of Ohms law 

2. Convection current density 

Conduction current density or Point form of Ohms law: 

Conduction current requires conductors. 

Ohms law: 

The current flowing through a linear circuit is directly proportional to impressed voltage provided 

the temperature is kept constant. 

I 𝛼 V 

I = GV 

I = V/R 

We know R= 𝜌𝑙/𝐴 

I = 
𝑉𝐴

𝜌𝑙
 

𝐼

𝐴
 = 

1

𝜌

𝑉

𝑙
 

J = 𝜎. E 

Which is known as point form of Ohms law for insulators or dielectrics. 

J = 0 conduction current cannot flow through free space. 



Convection current density: 

Convection current does not involve conductor and it does not obey Ohms law. It occurs and 

current flowing through a insulating medium or through liquid or through vaccum. Consider a 

current filament as shown. There is a flow of charge density 𝜌v at velocity v along y-axis. 

v = vy ay 

The current through the filament  

ΔI = 
Δ𝑄

Δ𝑡
 

We know 𝜌v = 
Δ𝑄

Δ𝑣
 

Δ𝑄 =  𝜌vΔ𝑉 

ΔI =𝜌v
Δ𝑉

Δ𝑡
 = 𝜌v

Δ𝑆Δ𝑙

Δ𝑡
 

Δ𝐼

Δ𝑆
 = 𝜌v

Δ𝑙

Δ𝑡
 

J = 𝜌vvyay 

Here ΔI is the convection current and J is the convection current density. 

Continuity Equation: 

Continuity equation of charge works on the principle of law of conservation of charge. It states that 

the charge can neither be created nor destroyed. We know that current is rate of flow of charge. 

I = - 
𝑑𝑄

𝑑𝑡
     (1) 

‘-‘ indicates the opposite direction of electrons to the current. 

We know that volume charge density 

𝜌𝑣 =  
𝑑𝑄

𝑑𝑉
 

Q = ∫ 𝜌𝑣𝑑𝑉          (2) 

From equations 1 & 2 

I = -∫
𝑑𝜌𝑣

𝑑𝑡
𝑑𝑉           (3) 

We know  



I = ∫ 𝐽. 𝑑𝑆           (4) 

From 3 & 4 

∫ 𝐽. 𝑑𝑆 = - ∫
𝑑𝜌𝑣

𝑑𝑡
𝑑𝑉 

∫ ∇. 𝐽 𝑑𝑉 = - ∫
𝑑𝜌𝑣

𝑑𝑡
𝑑𝑉 

∇. 𝐽 = - 
𝑑𝜌𝑣

𝑑𝑡
 

Boundary conditions between conductors and free space(Dielectric): 

First Boundary condition: 

Bigger source a boundary formed by conductor and free space, the charge cannot reside inside a 

conductor since they repel each other and finally they reach the boundary of the conductor. 

Construct a rectangular path ABCDA as shown. We know that electric field is conservative field 

∫ 𝐸. 𝑑𝑙 = 0 

∫ 𝐸. 𝑑𝑙
𝐴𝐵

 + ∫ 𝐸. 𝑑𝑙
𝐵𝐶

+ ∫ 𝐸. 𝑑𝑙
𝐶𝐷

+ ∫ 𝐸. 𝑑𝑙
𝐷𝐴

 = 0  

Et1Δ𝑙 – Eh1
Δℎ

2
 + 0 + 0 +0+ En1

Δℎ

2
  = 0 

Et1 = 0 

E = Et1 + En1 

  = En1 

Electric field is always normal to the surface of the conductor. 

Second boundary condition: 

Construct a pill box and apply Gauss law to the pill box. 

𝜑 = 𝑄 

∫ 𝐷. 𝑑𝑠 = 𝑄 

∫ 𝐷. 𝑑𝑠
𝑡𝑜𝑝

 + ∫ 𝐷. 𝑑𝑠
𝑏𝑜𝑡𝑡𝑒𝑚

 +∫ 𝐷. 𝑑𝑠
𝑙𝑎𝑡𝑒𝑟𝑎𝑙

  = 𝜎𝑑𝑆 

Dn1 = 𝜎 

Normal component of flux density is equal to the normal flux density. 



Properties of Conductors: 

Electric field inside the conductor is zero. 

Electric field is always normal to the surface of the conductor. 

The value of electric flux density is equal to surface charge density. 

The tangential component of electric field is zero. 

Conductors & Dielectrics: 

Conductor is one in which the outer electrons of an atom is easily detachable and migrate with 

application of weak Electric field. 

A dielectric is one in which the electrons are rigidly bounded to their nucleus, so the ordinary 

electric field will not be able to detach them away. The dielectric placed in electrostatic field will be 

subjected to electro static induction. The electric field will twisted and strain the molecules to orient 

the positive charges in the direction of electric field and negative charges oppositely. If the electric 

field strength is too high the dielectric will break down cease to beam insulator. 

Types of Dielectrics: 

1. Polar dielectrics 

2. Non-polar dielectrics 

Polar dielectrics: 

In polar dielectrics the molecules from dipoles even in absence of electric field. Even in absence of 

electric field, the dipoles are disposed at random the resultant electric field is zero. On the 

application of electric field the dipoles rearranged themselves so that their axes are aligned with the 

applied field. The electric field will twist and strain the molecules to orient the positive charges in 

the direction of electric field and negative charges oppositely. This shifting results an instantaneous 

current called displacement current which causes in very small fraction of seconds. 

Eg: water, ether, ammonia 

Non-Polar dielectrics: 

In these dielectrics the positive and negative elements in the uncharged conditions are closed to 

each other that their action is neutral. In the application of electric field will strict the positive and 

negative charges lightly with in the molecules to give rise to dipole. 

Eg: H, O etc 

 



Polarization: 

The elastic shifting of charged clouds in an atom of dielectric material when it is subjected to an 

electric field is called polarization. It is defined as movement of dipole. 

P = 
𝑚

𝑉
 

If there are n dipoles the volume then total dipole moment is 

m = m1+m2+…+mnΔ𝑉 

m = ∑ 𝑚𝑖
𝑛Δ𝑉
𝑖=1  

polarization  = total displacement / volume 

         = 
∑ 𝑚𝑖

𝑛Δ𝑉
𝑖=1

𝑉
 

Dielectric Parameters: 

Consider a dielectric material cutting the form of a slab of permittivity 𝜖as shown and placed in 

uniform electric field. The effect of field due to polarize the dielectric inducing atomic dipole 

through out the volume of specimen in the alignment with the electric field. Consequently 

neutralization of equal and opposite charge inside the dielectric charges reside on the slab and form 

dipole. 

Polarization P = 
𝑄𝑙

𝑉
 = 

𝑄𝑙

𝐴𝑙
 = 

𝑄

𝐴
 = 𝜎𝑝 ul 

𝜎𝑝is surface charge density. 

The internal field Ei = Ea+E1 

Where Ea is applied field, E1 is field induced in the slab which is opposite to that of applied field. 

E1 = - 
𝜎𝑝

𝜖0
 ul 

     = - 
𝑃

𝜖0
 ul 

Ei = Ea- 
𝑃

𝜖0
 

Ea = Ei+ 
𝑃

𝜖0
 

𝜖0Ea  =𝜖0 Ei + P 

D = 𝜖0 Ei + P   (1) 



P 𝛼 Ei 

P = 𝜖0𝜓𝑝Ei 

D = 𝜖0 Ei + 𝜖0𝜓𝑝Ei 

D = 𝜖0Ei(1+ 𝜓𝑝) 

D = 𝜖0𝜖𝑟 Ei 

Susceptability (𝝍𝒆) : 

Number of dipoles induced by unit volume under the influence of unit strength electric field in a 

material is known as electrical susceptibility. 

𝜓𝑒  = 𝜖𝑟 - 1 

Susceptibility is one less than relative permittivity. For linear dielectric, 

Polarization 𝛼 Ei 

P = 𝜖0𝜓𝑒Ei       (1) 

We know that D = 𝜖0𝜖𝑟 Ei 

D = 𝜖0(1+ 𝜓𝑒) Ei   (2) 

From equations 1 & 2 

𝑃

𝐷
 = 

𝜓𝑒

(1+ 𝜓𝑒) 
 = 

𝜓𝑒

𝜖𝑟
     (3) 

Dielectric Boundary conditions: 

First boundary condition: 

When the flux lines are flow through single medium they are continuous. If they go through 

boundary formed by two dielectrics they get reflected. First boundary condition deals with electric 

field intensity. 

E1 and E2 are electric field in medium 1 and 2 respectively. Construct a rectangular path ABCDA as 

shown. And apply conservative property for the rectangular loop ABCDA. 

∫ 𝐸. 𝑑𝑙 = 0 

∫ 𝐸. 𝑑𝑙
𝐴𝐵

 + ∫ 𝐸. 𝑑𝑙
𝐵𝐶

+ ∫ 𝐸. 𝑑𝑙
𝐶𝐷

+ ∫ 𝐸. 𝑑𝑙
𝐷𝐴

 = 0  



Et1Δ𝑙 – En1
Δℎ

2
 - En2

Δℎ

2
  - Et2Δ𝑙 + En2

Δℎ

2
+ En1

Δℎ

2
  = 0 

Et1 = Et2    (1) 

At the boundary the tangent along components of electric field vectors are equal. 

sin𝜃1 = 
Et1

𝐸1
 

Et1 = E1 sin𝜃1   (2) 

Et2 = E2 sin𝜃2   (3) 

E1 sin𝜃1=  E2 sin𝜃2     (4) 

Second boundary equations: 

Dn1 and Dn2 are normal components of flux density vectors in medium 1 and 2 respectively. An 

infinite sheet with charge density 𝜎 C/m2 is at the boundary. Second boundary condition deals with 

flux density. Construct the pill box at the boundary as shown. Apply Gauss’s law  

Flux enter the pill box  = Dn2dS 

Flux leave the pill box  = Dn1dS 

Net flux in the pill box = Dn2dS - Dn1dS = 𝜎 dS 

Dn2 - Dn1 = 𝜎 

If the charge sheet is not present then  

Dn2 - Dn1 = 0 

Dn2 = Dn1    (5) 

This is known as second boundary condition. 

cos𝜃1  = 
𝐷𝑛1

𝐷1
 

𝐷𝑛1 = D1cos𝜃1   (6) 

cos𝜃2  = 
𝐷𝑛2

𝐷2
 

𝐷𝑛2 = D2cos𝜃2    (7) 

D1cos𝜃1     = D2cos𝜃2(8) 



D1 = 𝜀0𝜀𝑟1E1 

D2 = 𝜀0𝜀𝑟2E2 

tan 𝜃2

tan 𝜃1
 = 

𝜀𝑟2

𝜀𝑟1
 

𝜃1is angle of emergence. 

𝜃2is angle of incidence. 

This is relation between two dielectric surfaces. 

 

 

 



UNIT - IV 

MAGNETOSTATICS 

Objectives: 

 

 To introduce the students to Basic concepts of magnetic field, magnetic flux density. 

 To introduce the basics of biot savart's law. 

 To introduce the maxwell's second and third equation.  

 

Syllabus: 

Static magnetic fields – Biot-Savart’s law – Oesterd’s experiment - Magnetic field intensity (MFI) 

– MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current 

– Carrying wire – Relation between magnetic flux, magnetic flux density and MFI – Maxwell’s 

second Equation, div(B)=0. 

 

Outcomes: 

Students will be able to 

 determine the magnetic field using biot savart's law and ampere's law. 

 define magnetic field intensity or magnetic field strength (𝐻) and derive expression 

for magnetic field for current filament, circular current loop polygon etc 

 determine the H due to current sheet. 

 Able to obtain maxwell's second equation from biot savart's law and third equation  

from ampere's lawevaluate the electric field from potential(Potential gradient) 

 

 

 

 

 



UNIT IV 

MAGNETOSTATICS 

Steady current (or) D.C current (or) Time invariant current: 

The motion of charges is at a constant rate with a time is called steady current. Magneto 

statics deals with magnetic field produced by steady current. 

Magnetic field: 

A static magnetic field can be produced from a permanent magnetic (or) a current carrying 

conductor. A steady current flowing in a straight conductor produces a magnetic field around it. 

The field exists as concentric circles having centers at the axis of the conductor. 

If we hold the current carrying conductor by the right hand so that the thumb points the direction of 

current flow, the fingers point the direction of magnetic field. The unit of magnetic flux is Weber. 

1 Wb = 108 maxwells 

Magnetic flux density (B): 

The magnetic flux per unit area is called magnetic flux density. The unit of magnetic flux density is 

Tesla (or) Wb/m2. 

The magnitude and direction of magnetic flux density due to current carrying conductor is given by 

Biot-Savart’s law. 

B =
dϕ

ds
 

dϕ = B. ds 

ϕ = ∫ B. ds
s

 

Magnetic field intensity: 

The magnetic field intensity at any point is the force experienced by a unit north pole of one weber 

strength when placed at that point. Unit is N/Wb, A/m (or) AT/m. It is denoted by H̅. 

Magneto Motive Force (mmf): 

Magneto motive force is produced when an electric current flows through a coil of several turns. 

The Magneto motive force depends on the current and number of turns. Magneto motive force 

produces flux in a magnetic circuit. The unit of Magneto motive force is Ampere-turns. 

 



Reluctance (s): 

Reluctance is defined as the ratio of Magneto motive force to the flux produced. Reluctance is 

similar to the resistance in a electric circuit. 

Reluctance is directly proportional to the length of the magnetic path and inversely proportional to 

the cross-sectional area of the path. The reciprocal of reluctance is called Permeance. 

Magneto motive force = Reluctance X flux 

Reluctance = 
mmf

flux
 

s=
l

μ0μrA
 

Biot-Savart’s law: 

 

Steady current flowing through a straight conductor produces magnetic field in the form of 

concentric circles. The magnetic field intensity is given by Biot-Savart’s law. 

A straight conductor is assumed to be formed by several segments. Such segment is called current 

element. Current element is vector defined as I. dl.⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Let the magnetic field intensity at P due to current element I. dl⃗⃗ ⃗⃗ ⃗⃗   be dH⃗⃗⃗⃗  ⃗. The point P is at a distance 

‘r’ m from the current element. 

According to Biot-Savort’s law, the magnitude of dH is 

1) Directly proportional to the current element. 

2) Inversely proportional to the square of the distance. 

3) Directly proportional to the sine of the angle between current element and distance vector. 

ar̂ is the unit vector normal to the plane of the paper. 



1) |dH| ∝ |I dl| 

2) |dH| ∝
1

|r|2
 

3) |dH| ∝ sinθ 

|dH| ∝
|I dl|sinθ

|r|2
 

Constant in M.K.S unit is 
1

4π
 

|dH| =
|Idl|sinθ

4π|r|2
 

dH⃗⃗⃗⃗  ⃗ = |dH|ar̂ 

 

dH⃗⃗⃗⃗  ⃗ =
|I dl|sinθ

4π|r|2
ar̂                                       since |r|ar̂ = r  

ar̂ =
r 

|r|
 

=
|I dl|sinθ

4π|r|2
r 

|r|
 

=
|I dl|r sinθ

4π|r|3
 

dH⃗⃗⃗⃗  ⃗ =
Idl⃗⃗ ⃗⃗  Xr 

4π|r|3
 

H due to entire conductor can be obtained by integration. 

H⃗⃗ = ∫
I dl⃗⃗⃗⃗⃗⃗ Xr 

4π|r|3
 

H⃗⃗ =
∫ I dl⃗⃗⃗⃗⃗⃗ Xr 

4π|r|3
 

H⃗⃗ =
Il⃗⃗ Xr 

4π|r|3
 

 

B⃗⃗ = μH  where μ = permeability 

μ = μ0μr 

μ0 = permeability of free space 

μr = relative permeability 

 

B⃗⃗ =
μ

4π|r|3
SI dl⃗⃗⃗⃗⃗⃗ Xr  

B⃗⃗ =
μ0μr

4π

(Il⃗⃗ Xr )

|r|3
 

For air(or) free space μr = 1 

 



B⃗⃗ =
μ0

4π

(Il⃗⃗ Xr )

|r|3
 

Since μ0 = 4πX10−7 Henry/m 

B⃗⃗ = 10−7 (Il⃗⃗ Xr⃗ )

|r|3
   Wb/m2 

 

H due to finite conductor and infinite conductor: 

We have to determine H due to a finite current carrying conductor at P. P is at a distance ‘d’ 

m from the origin. 

Consider a current element Idx at a distance ‘x’ m from the origin. The distance vector between 

current element vector and point P is the vector r . 

 
Let dH be the field intensity due to current element Idx which is at a distance ‘x’ m from the origin.  

By Biot-Savart’s law, 

 

dH⃗⃗⃗⃗  ⃗ =
Idl⃗⃗ ⃗⃗  Xr 

4π|r|3
 

|dH| =
Idx|r|sin (π − θ)

4π|r|3
 

dH =
Idxsinθ

4π|r|2
 

From∆le ,         (1) 

 

tanθ=
d

x
 

x = dcotθ 



dx = −dcosec2θ        (2) 

sinθ=
d

r
 

r = dcosecθ         (3) 

 

From (1),(2) and (3)  

dH =
−Idcosec2θdθsinθ

4πd2cosec2θ
 

dH = −
I

4πd
sinθdθ 

Total magnetic field strength is obtained by integration, 

H = ∫ −
I

4πd
sinθdθ

α

β

 

= −
I

4πd
∫ sinθdθ

α

β

 

=
I

4πd
(cosα − cosβ) 

H⃗⃗ = |H|ar̂ 

H⃗⃗ =
I

4πd
(cosα − cosβ)ar̂ 

As length tends to ∞, ∝→ 0, β → 1800 

|H| =
I

4πd
(cos0 − cos1800) 

=
I

4πd
(1—(−1)) 

|H| =
I

2πd
 A/m 

H⃗⃗ =
I

2πd
ar̂A/m 

From this equation,it can be seen that the magnetic field intensity is inversely proportional to the 

distance. 

B⃗⃗ =
μ

2π

I

d
ar̂ Wb/m2 

Solenoid: 

A solenoid is a cylindrically shaped coil consisting of a large number of closely spaced turns of 

insulated wire wound usually on a non-magnetic frame. 



 

 

 

H inside a solenoid: (Finite & infinite) 

 

A solenoid has N no of turns on an iron rod. The turns can be assumed to be circular current loops. 

Considering a small section of length dx at a distance ‘x’ m from the origin . The no of turns in this 

section are ndx. 

Let dH be the magnetic field intensity due to this section. 

We know that dH =
Ia2

2r3 ndx        (1) 

sinθ =
a

r
 

r =
a

sinθ
= acosecθ        (2) 

cotθ =
x

a
 

x = acotθ 

dx = −acosec2θdθ        (3) 

Sub (2) and (3) in (1), 



dH = −
Ia2

2a3cosec3θ
nXacosec2θdθ 

=
−In

2

1

cosecθ
 

=
−In

2
sinθdθ 

Total magnetic field intensity can be obtained by varying θ from β to α. 

H = ∫
−In

2
sinθdθ

α

β

 

=
−In

2
∫ sinθdθ

α

β

 

=
In

2
[cosα − cosβ] 

Case 1: Let ‘P’ be the midpoint, β = π − α 

H =
In

2
[cosα − cos (π − α)] 

= nIcosα 

=
NI

L
cosα 

H =
NI

L
cosα 

Case 2: For infinitely long solenoid, α → 0,β = x 

H =
In

2
[cos0 − cos π] 

= nI 

H =
NI

L
 AT/m 

 

 

 



H due to a circular current loop: 

 

We have to find H at point ‘P’ which is at a distance ‘h’ m from the center of the current 

loop. The circular loop can be divided into no of current elements. dH1 and dH2 are field intensities 

due to the elements Idl1 and Idl2 respectively. Similarly several vectors can be drawn due to several 

current elements. When these vectors are resolved, radial components get cancelled and normal 

components get added.  There the direction of resultant magnetic field intensity is normal to the 

plane of the current loop. The same can be obtained using thumb rule (or) cork-screw rule to the 

current loop. 

Normal component due to dH1 isdH1cos(90 − α) i.e. dH1sinα. 

Normal component due to dH2 isdH2cos(90 − α) i.e. dH2sinα. 

Therefore, sum of normal components would be resultant Hn. 

Hn = dH1sinα + dH2sinα + ⋯…+ dHnsinα 

Hn = ∫dH1sinα 

Hn = ∫
Idl⃗⃗ ⃗⃗ Xr 

4π|r|3
sinα 

= ∫
|Idl||r|sinθ

4π|r|3
sinα 

= ∫
|Idl||r|  (1)

4π|r|3
sinα 



= ∫
Idl

4π|r|2
(
a

r
) 

=
Ia

4π|r|3
X 2πa 

=
Ia2

2|r|3
 

|H| =
Ia2

2|r|3
A/m 

H⃗⃗ = |H|an̂ 

H =
Ia2

2(a2+h2)
3
2

an̂ A/m 

Magnetic field intensity at the center of the current loop: 

At the center, h=0. 

H =
Ia2

2a3
==

I

2a
an̂  A/m 

 If there are N no of turns, 

H⃗⃗ =
I N a2

2(a2 + h2)
3

2

an̂  AT/m 

 

Maxwell’s second equation: 

From Biot-Savart’s law, we know that 

B⃗⃗ =
μ

4π|r|3
(I l⃗⃗  ⃗ X r ) 

Taking divergence on both sides, 

Div B = Div (
μ

4π|r|3
) (I l⃗⃗  ⃗ X r ) 

=
μ

4π|r|3
Div(I l⃗⃗  ⃗ X r )        (1) 

We know that Div(u⃗  X v⃗ ) = v. curl u − u. curl v    (2) 

Using (2), we can write (1) as 

Div B =
μ

4πr3
(r. curl I l − I l. curl r) 



Curl deals with rotation. The current element vector and distance vector have no rotation. Therefore 

curl I dl⃗⃗⃗⃗⃗⃗  and curl r  vanishes. 

Div B =
μ

4π|r|3
[0 − 0] 

Therefore, Div B= 0. 

This equation is known as field form (or) Differential form (or) Vector form of Biot-Savart’s law. 

This is also known as Maxwell’s second equation. 

Alternate proof for Div B=0: 

Consider an infinitesimal volume ∆V as shown in fig. From fig, it can be seen that the flux entering 

and leaving are equal. 

 

 Net out flow of flux per unit volume is zero. 

∅ = 0 

∫ B. ds
s

= 0      (1) 

From divergence theorem, 

∫ B. ds
s

= ∫ Div B. dv
v

      (2) 

From (1) and (2) 

∫ B. ds

s

= ∫ Div B. dv

v

= 0 

∫ Div B. dv

v

= 0 

Div B=0 

Therefore B is a solenoidal field. In electrostatics, positive charge acts as a source and negative 

charge acts as sink. The flux lines start from positive charge and terminate on the negative charge. 

Electric lines of flux are discontinues. 

Magnetic lines of flux start at one point and terminate at the same point. These are continuous. This 

is nothing like a source and sink. Therefore isolated poles do not exist. 



UNIT - V 

FORCE IN MAGNETIC FIELDS 

 

Objectives: 

 

 To study the magnetic force and torque through Lorentz force equation in 

magnetic field environment like conductors and other current loops. 
 

Syllabus: 

Magnetic force - Moving charges in a Magnetic field - Lorentz force equation - force 

on a current element in a magnetic field - Force on a straight and a long current 

carrying conductor in a magnetic field - Force between two straight long and parallel 

current carrying conductors - Magnetic dipole and dipole moment - a differential 

current loop as a magnetic dipole - Torque on a current loop placed in a magnetic 

field. 

 

Outcomes: 

Students will be able to 

 

 Define the concept of magnetic force 

 Describe Lorentz force Equation 

 Explain force on a current element in magnetic field  

 Determine the force on straight and long current carrying conductor in a 

magnetic field 

 Derive force between two straight long and parallel current carrying conductors 

in magnetic field 

 List the applications of magnetic field force 

 

 

 

 

 



UNIT - V 

FORCE IN MAGNETIC FIELDS 

Ampere’s law (or) Ampere’s circuital law: 

 The line integral of tangential component of M.F.I vector over a closed path is equal 

to current enclosed by that path (or) Work done by unit pole around a current carrying 

conductor is equal to current enclosed. If the conductor has ‘N’ no of turns, 

1)  

2)  

3)  

Proof: 

 

 Consider a closed path around a current carrying conductor as shown in fig. The 

magnetic field at any point on the path is tangent. The point ‘P’ is at a distance ‘r’ from the 

conductor. Consider dl at point ‘P’ which is at direction  is tangential to the circular path. 

From the Biot-Savart’s law, the M.F.I along the conductor is given by 

 

 

 

.  

 

 



How to apply ampere’s law: 

 It is used to determine the value of M.F.I (H) construct an ampere loop such that 

magnetic field is uniform and direction of magnetic field is tangential to the loop at every 

point. Then apply Ampere’s law. 

Applications: 

1) H due to long conductor: 

Construct an ampere loop with radius ‘r’ and apply Ampere’s law. 

 

 

 

 

 

Note: We cannot apply ampere’s law to the finite conductor because the magnetic field is 

not uniform. 

2)  H due to a long solenoid: 

 

A solenoid has ‘N’ turns and it carries a current ‘I’ A. The current direction is shown in 

fig. The magnetic field is towards left. The magnetic field outside the solenoid is zero. 

Consider (or) construct rectangular loop (ABCDA) and apply Ampere’s law, 

 



 
Work done along CD is ‘0’ since it is outside the solenoid. 

Work done along DA and BC are ‘0’ because H and dl are perpendicular. 

 

 

 
We can’t apply ampere’s law for finite solenoid because magnetic field is not 

uniform. 

 

Maxwell’s third equation: 

 

According to ampere’s law, the line integral of magnetic field intensity vector over a closed 

path is equal to current enclosed by that path. 

      (1) 

We know that,  

      (2) 

From eq (1) and (2), 

      (3) 

This is known as integral form of Ampere’s law. 

From the Stoke’s theorem, 

We know that 

      (4) 

From (3) and (4), 

      (5) 

Where ‘J’ is known as point form (or) vector form (or) differential form of Ampere’s law. 

This is also known as Maxwell’s 3rd equation. 

Force on moving charge: 

A charge particle is moving with velocity (v) is placed in magnetic field it experiences a force 

whose magnetic is proportional to the product of magnitudes of charge and velocity (v), flux 

density (B) and sine of angle between B and v. 



                                         

F = Q v B sin 𝜃. 

F = Q (v×B) 

The direction of force is perpendicular to the both v and B and is given a unit vector in the 

direction of v×B . 

F = Q (v×B) 

Lorentz’s Force Equation : 

A charged particle is moving with velocity is placed in magnetic field it experiences a force 

where magnitude is proportional to the product of magnitudes of charge and velocity (v) and 

flux density(B) and sine of angle between B and v. 

F = Q v B sin 𝜃. 

F = Q (v×B)                     (4.1) 

The direction of force is perpendicular to the both v and B and is given a unit vector in the 

direction of v×B . 

When a charge Q is kept in an electric field it experiences a force. 

F2 = Q E                   (4.2) 

If the same charge is kept in an electro-magnetic field, the total force will be sum of F1 and 

F2 by superposition principle.  

F = F1 + F2  

F = Q (v×B) + Q E                   

F = Q [ (v×B) + E ]                  (4.3) 

Which is known as Lorentz force equation 

 

 



Force on a current element: 

When a charged particle dQ is moving in a steady magnetic field it experiences a force due to 

different element. 

dF = dQ (v×B) 

dF = dQ v B sin 𝜃 ar  

I=dQ/dt 

dQ= I dt 

dF = I dt vB sin 𝜃 ar  

we know that dl = v dt 

differential force dF = I dl B sin 𝜃 ar  

then total force on the current element  F = I l × B 

F = - B ×Il 

Where 𝜃 is angle between conductor and magnetic field. 

Force between two differential current elements 

Consider two differential current elements I1dl1, I2dl2 as shown in figure. According to Biot-

Savarts have both the elements produce magnetic fields i.e. when a current (I1) close through 

one of conductors, the magnetic field is developed around the conductors. If I2 is placed in 

this magnetic field then force is exerted on the 2nd current element I2dl2. 

 

The magnetic field at point (2) due to the current in the current element I1dl1 at point 1 is 

given by 

 



 

The force on differential current element  

d(dF2) =  

d(dF2) =  

d(dF2) =  

The total force on conductor 2 due to current in conductor 1. 

F2 =  

This is also known as amperes torque equation. Similarly the total force on conductor 1 due 

to the current in conductor 2 is given by 

F1 =  

According to newtons 3rd law of motion, action and reaction are equal and opposite. 

Force on a closed current loop: 

The force exerted on a current element in a magnetic field is given by  

 

 

 

Assume that B is uniform throughout the field. The force is  

 

 

If a closed filamentary circuit is placed in a uniform magnetic field, it does not experience a 

force. 

If magnetic field is not uniform throughout the field, the force is not zero. 

 



Force between two straight parallel current carrying conductors: 

In figure both conductors carrying current in the same direction, the magnetic field of first 

conductor in the upward direction and magnetic field due to second conductor is in the 

downward direction. The upward direction of the magnetic field is represented by south pole 

and downward as north pole. There is a force of attraction between two conductors carrying 

current in same direction. 

From figure there is a force of repulsion between two conductors carrying current in opposite 

directions. 

                              

Force between two straight parallel current carrying conductors in same direction: 

Consider two straight long parallel conductors placed at a distance ‘d’ m apart. We have to 

determine the force between two conductors per meter length. 

 

Consider conductor one produces magnetic field which is located at conductor two is given 

by 

 

Conductor two carrying current I2 and is placed in field produced by conductor one. Then, the 

conductor two experiences a force. 

F2 = I (l × B) 

F2 = -I2 (l ax × -B1 az) 

F2 = -I2 l B1 ay    N 



The direction of force is along –ve y-axis similarly, the magnetic field produced by conductor 

two at conductor one is given by  

 

The force experienced by conductor one due to current in conductor two is given by 

F2 = -I1 (l ax × B az) 

F2 = -I1 l B ay 

Therefore , 

F2 = -I2 l  ay  

F2/l =   ay  

F =   ay  N/m 

From this we can conclude that there is a force of attraction between two conductors carrying 

current in the same direction. 

If I1 =I2=1A; d=1m; μ=μ0 

F =   

1A is defined as the value of current which is flowing in two infinitively long conductors 

with their centres in a part in free space produce a force between them is 2×10-7 N/m. 

Magnetic torque: 

The force on a filamentary closed circuit is given by  

F = - I ʃ B  x  d L  

and assume a uniform magnetic flux density, then B may be removed from the integral: 

F = —IB x ʃ dL 

However, In closed line integrals in an electrostatic potential field dL = 0, and therefore the 

force on a closed filamentary circuit in a uniform magnetic field is zero. 

If the field is not uniform, the total force need not be zero. 

This result for uniform fields does not have to be restricted to filamentary circuits only. The 

circuit may contain surface currents or volume current density as well. If the total current is 

divided into filaments, the force on each one is zero, as we showed above, and the total force 



is again zero. Therefore any real closed circuit carrying direct currents experiences a total 

vector force of zero in a uniform magnetic field. 

Although the force is zero, the torque is generally not equal to zero. 

In defining the torque, or moment, of a force, it is necessary to consider both an origin at or 

about which the torque is to be calculated, as well as the point at which the force is applied. 

In Fig. 9.5a, we apply a force F at point P, and we 

 

FIGURE 9.5 

(a) Given a lever arm R extending from an origin 0 to a point P where force F is applied, the torque about 0 is T 

= R x F. (h) If F2 = -F1, then the torque T = R21 x F1 is independent of the choice of origin for R1 and R2. 

Establish an origin at O with a rigid lever arm R extending from 0 to P. The torque about 

point O is a vector whose magnitude is the product of the magnitudes of R, of F, and of the 

sine of the angle between these two vectors. The direction of the vector torque T is normal to 

both the force F and lever arm R and is in the direction of progress of a right-handed screw as 

the lever arm is rotated into the force vector through the smaller angle. The torque is 

expressible as a cross product, 

T=RxF 

Now let us assume that two forces, F1 at P1 and F2 at P2, having lever arms R1 and R2 

extending from a common origin 0, as shown in Fig. 9.5b, are applied to an object of fixed 

shape and that the object does not undergo any translation. Then the torque about the origin is 

T = R1 x F1 + R2 X F2 

where 

F1 + F2 = 0 

and therefore 

T = (R1 — R2) x F1 = R21 x F1 

The vector R21 = R1 - R2 joins the point of application of F2 to that of F1 and is independent of 

the choice of origin for the two vectors R1 and R2. Therefore, the torque is also independent 

of the choice of origin, provided that the total force is zero. This may be extended to any 

number of forces. 



Consider the application of a vertically upward force at the end of a horizontal crank handle 

on an elderly automobile. This cannot be the only applied force, for if it were, the entire 

handle would be accelerated in an upward direction. A second force, equal in magnitude to 

that exerted at the end of the handle, is applied in a downward direction by the bearing 

surface at the axis of rotation. For a 40-N force on a crank handle 0.3 m in length, the torque 

is 12 Nm. This figure is obtained regardless of whether the origin is considered to be on the 

axis of rotation (leading to 12 Nm plus 0 m), at the midpoint of the handle (leading to 6 Nm 

plus 6 m), or at some point not even on the handle or an extension of the handle. 

We may therefore choose the most convenient origin, and this is usually on the axis of 

rotation and in the plane containing the applied forces if the several forces are coplanar. 

With this introduction to the concept of torque, let us now consider the torque on a 

differential current loop in a magnetic field B. The loop lies in the xy plane (Fig. 9.6); the 

sides of the loop are parallel to the x and y axes and are of length dx and dy. The value of the 

magnetic field at the center of the loop is taken as Bo. Since the loop is of differential size, 

the value of B at all points on the loop may be taken as Bo. (Why was this not possible in the 

discussion of curl and 

 

Fig: A differential current loop in a magnetic field B. The torque on the loop is dT = 

I(dxdyaz) x Bo = I dS x B 

divergence?) The total force on the loop is therefore zero, and we are free to choose the origin 

for the torque at the center of the loop. 

The vector force on side 1 is 

dF1 = I dx ax x Bo 

or 

dF1 = I dx(Boyaz, — Bozay) 

For this side of the loop the lever arm R extends from the origin to the midpoint of the side, 

R1 = -0.5dy ay, and the contribution to the total torque is 

     dT1 = R1 x dF1 



 = -0.5dy ay x I dx(Boyaz — Bozay)  

 = -0.5dx dy IBoyax 

The torque contribution on side 3 is found to be the same,  

dT3 = R3 x dF3 = -0.5dy ay x (—I dx ax x Bo) = -0.5dx dy IBoyax = dT1 

and 

dT1 + dT3 = —dx dy IBoyax  

Evaluating the torque on sides 2 and 4, we find 

dT2 + dT4 = dx dy IBoxay 

and the total torque is then 

dT = I dx dy(Boxay — Boyax) 

The quantity within the parentheses may be represented by a cross product,  

    dT = I dx dy(az x Bo) 

     or 

    dT = I dS x B         (15) 

where dS is the vector area of the differential current loop and the subscript on Bo has been 

dropped. 

We now define the product of the loop current and the vector area of the loop as the 

differential magnetic dipole moment dm, with units of Am2. Thus 

      dm = IdS                          (16) 

and                         dT = dm X B        (17) 

 

If we extend the results we obtained differential electric dipole by determining the torque 

produced on it by an electric field, we see a similar result, 

dT = dp x E 

Equations (15) and (17) are general results which hold for differential loops of any shape, not 

just rectangular ones. The torque on a circular or triangular loop is also given in terms of the 

vector surface or the moment by (15) or (17). 

Since we selected a differential current loop so that we might assume B was constant 

throughout it, it follows that the torque on a planar loop of any size or shape in a uniform 

magnetic field is given by the same expression, 



     T=ISxB=mxB         (18) 

We should note that the torque on the current loop always tends to turn the loop so as to align 

the magnetic field produced by the loop with the applied magnetic field that is causing the 

torque. This is perhaps the easiest way to determine the direction of the torque. 

Magnetic dipole: 

A circular loop of small area is called magnetic dipole. 

Magnetic dipole moment: 

It is the product of current and area. 

m = I A an   A-m2 

If the loop has ‘N’ no. of turns then  

m = NI A an   AT-m2 

where an is the unit vector normal to the plane of the loop. 

Consider a magnetic material having ‘n’ no. of dipoles then the total magnetic dipole 

moment,  

m = m1 + m2 + ...........+ mn 

Magnetic polarisation or magnetisation: 

It is ratio of magnetic dipole moment per unit volume. 

 

 

 

 

 

 

 



UNIT – VI 

TIME VARYING FIELDS 

Objectives: 

 

 To study time varying and Maxwell’s equations in different forms andMaxwell’s 

fourth equation for the induced Emf. 

 

Syllabus: 

 

 Time varying fields – Faraday’s laws of electromagnetic induction – Itsintegral 

and point forms – Maxwell’s fourth equation, Curl (E)=-∂B/∂t –Statically and 

Dynamically induced EMFs – Simple problems -Modificationof Maxwell’s equations for 

time varying fields – Displacement current –Poynting Theorem and Poynting vector. 

 

Outcomes: 

 

Students will be able to 

 

 Define the function of time varying fields 

 Derive faraday's law of electromagnetic induction 

 Identify the application of faraday's law of electromagnetic induction 

 List applications of faraday's law in the field of electrical engineering 

 

 

 

 

 



UNIT – VI 

TIME VARYING FIELDS 

 

Faraday’s First law: 

Whenever conductor cuts the flux (flux not constant) emf is induced in the conductor. 

e = - 𝑁 
𝑑𝜙

𝑑𝑡
 

Faraday’s second law: 

The emf induced per turn is negative of the rate of change of flux linkages. 

e = - 
𝑑𝜙

𝑑𝑡
 

‘-‘ sign is an indication that the emf is in such direction has to produce a current whose flow is added to 

original flow to reduce magnitude of emf. 

Lenz’s Law: 

Consider a wire loop shown with a bar magnet moving upwards show that the flux through the loop 

increasing, this results an induced current in the loop flowing in a direction such that loop magnetic field 

oppose the motion of the magnet since like pole repel each other. 

The magnet is moving down away from the flux through the loop is decreasing, this results an induced 

current flowing in a direction such that loop magnetic field oppose the motion of the magnet. Since the 

unlike poles attract eachother. Thus the induced current in the loop is always in such a direction to oppose 

the change produces it. 

Let us suppose that emf in circuit b acts to send a current in the same direction as current in circuit a. 

Such current will strengthen original magnetic field sut up by increasing current in circuit a. The induced 

emf and the current, flux increases. This is impossible therefore direction of emf circulate a current in 

circuit b in such a direction as to oppose the increasing in the original speed. 

According to Lenz’s law the induced voltage acts to produce the opposing flux. Lenz’s law state that the 

direction of induced emf is such as it tends to oppose the cause or more explicitely direction induced emf 

in any current produces or tends to oppose the change of flux that is produced in it. 

Maxwell’s Fourth Equation: 

Consider a coil kept in the magnetic field as shown. X – indicates the flux is perpendicular to the plane of 

the coil. We know that 

V = ∫ 𝐸 . 𝑑𝑙 



From Faraday’s law 

e = - 𝑁 
𝑑𝜙

𝑑𝑡
 

    = - 
𝑑𝜙

𝑑𝑡
 

𝜙 = ∫ 𝐵 . 𝑑𝑆 

∫ 𝐸 . 𝑑𝑙 = - ∫
𝑑𝐵

𝑑𝑡
 dS 

∫ 𝐸 . 𝑑𝑙 = ∫ ∇XE  dS 

∇XE = - 
𝑑𝐵

𝑑𝑡
 

Point form or differential form of Maxwell’s 4th equation. 

From the above equation it can be observed that time varying magnetic field produces Electric field. 

Statically induced emf: 

Whenever change in flux that is passing through the conductor produces the emf on the conductor. This is 

known as statically induced emf. Consider a coil kept in the magnetic field shown. X- indicates increase 

in flux is perpendicular to the plane of the coil. We know that potential difference is the integral of E.dl at 

no load. 

V = ∫ 𝐸 . 𝑑𝑙 

e = - 
𝑑𝜙

𝑑𝑡
 

At no load e = V 

e = - 
𝑑𝜙

𝑑𝑡
 = ∫ 𝐸 . 𝑑𝑙 

Dynamically Induced emf: 

Whenever a conductor moves with a velocity passing through a stationary magnetic field. The emf is 

induced in the conductor. This emf is known as dynamically induced emf. 

A magnetic field is established perpendicular to the plane of paper as shown. The circuit has two metal 

rails connected at the upper end of the galvanometer. Amovable conductor is arranged to slide along the 

rails and maintain contact with the rails. The conductor moves with velocity v and distance dx in dt 

seconds. The emf induced in the conductor since flux linked by it increased. 

From Faraday’s Law 

e = - 
𝑑𝜙

𝑑𝑡
 



   = - 
𝑑

𝑑𝑡
 (BS) 

    = - B 
𝑑𝑆

𝑑𝑡
 

     = -B 
𝑙 𝑑𝑥

𝑑𝑡
 

e   = -Blv 

Faraday’s disc G/r’s: 

A disc of radius a is attached to the shaft or axis, the system is supported by 2 bearings on either side. One 

brush is brushed on the shaft and other is brushed over the edge of the disc. A magnetic field is applied in 

a direction perpendicular to the plane of the disc. This system is driven by prime mover at a speed of N 

rpm. When the disc rotates it cuts the flux an emf is induced in the disc the emf is collected using brushes 

as shown. According to Faraday’s second law the magnitude of emf is equal to time rate of change of 

flux. The disc is assumed to be formed by several meters of radius a. Consider a segment OA occupies 

position OB after dt seconds the area of triangle OAB is approximated to right angle triangle. 

According to Faraday’s law the magnitude of emf  

e = 
𝑑𝜙

𝑑𝑡
 

   = 
𝑑

𝑑𝑡
 (BS) 

=  B
𝑑𝑆

𝑑𝑡
 

=  B
𝑑

𝑑𝑡
 (

1

2
𝑎2 𝑑𝜃) 

   = 
1

2
𝐵𝑎2 𝜔 

      From the above equation it is seen that emf is directly proportional to B. 

Modified Ampere’s Law: 

As per Ampere’s law the line integral of magnetic field intensity vector over a closed path is equal to 

current enclosed by that path. 

∫ 𝐻 . 𝑑𝑙 = I       (1) 

We know that I = ∫ 𝐽 . 𝑑𝑠      (2) 

∫ 𝐻 . 𝑑𝑙 = ∫ 𝐽 . 𝑑𝑠        (3) 

By Stoke’stherom 

∫ 𝐻 . 𝑑𝑙 = ∫ ∇XH 𝑑𝑠         (4) 



From equations 3 & 4  

∇XH = J        (5) 

∇. ∇XH = ∇. J 

∇. J = 0     (6) 

From continuity equation  

∇. J = - 
𝑑𝜌

𝑑𝑡
     (7) 

Equation 7 contradicts with equation 6, This is called Maxwell’s dynamo equation. 

Maxwell stated that basic ampere’s law is not valid for time varying fields and valid for time invariant 

fields. 

Maxwell has done following modification that the ampere’s law is valid for time varying fields. 

From the continuity equation 

∇. J = - 
𝑑𝜌

𝑑𝑡
 

From the point form of Gauss law 

∇. D = 𝜌     (8) 

∇. J = - 
𝑑

𝑑𝑡
 (∇. D) 

∇. J + ∇.
𝑑

𝑑𝑡
 (D)     = 0 

∇. J + ∇. Jd= 0      (9) 

Where Jd = 
𝑑

𝑑𝑡
 (D) is displacement current density. 

We know that ∇. ∇XH = 0 

∇. J + ∇. Jd= ∇. ∇XH 

∇XH = J+Jd 

∫ ∇XH 𝑑𝑆= ∫(J + Jd) dS 

∫ ∇XH 𝑑𝑆 = I + Id  (10) 

From Stokes theorem,  

∫ 𝐻 . 𝑑𝑙 = ∫ ∇XH 𝑑𝑠 

∫ 𝐻 . 𝑑𝑙 = I + Id        (11) 



According to modified Ampere’s law the line integral of tangential component of magnetic field intensity 

vector for a closed path equal to I+ Id. 

Displacement current:         

The current through a capacitor is known as displacement current. 

Jd = 
𝑑𝐷

𝑑𝑡
 

𝐼𝑑

𝐴
 = 

𝑑𝜀𝐸

𝑑𝑡
 

   = 𝜖
𝑑𝐸

𝑑𝑡
 

E = 
𝑉

𝑑
 

Id = A
𝜖

𝑑

𝑑𝑉

𝑑𝑡
 

Id = C 
𝑑𝑉

𝑑𝑡
 

From above equation it can be seen that Id is the current through capacitor. The current flowing when the 

electric field across the capacitor is increasing or decreasing. The motion of the slider stop then the motion of 

the charges stopped and ammeter reading is zero. Id flows when the electric field is change with time. Consider 

a sinusoidal voltage source connected to parallel plate capacitor. Construct 2 blocks as shown. The second 

surface is constructed such that it encloses top capacitor plate alone no conduction current flows through it 

since it lies in dielectric. 

Apply Ampere’s law to the surface S1 and S2 

∫ 𝐻 . 𝑑𝑙 = I1 

∫ 𝐻 . 𝑑𝑙 = Id 

A free charge being stored and removed each capacitor plate a time varying field is produced between 

plates. This time varying field produces the Id. 

Conduction current and Displacement current: 

From the point form of Ohm’s law conduction current density, 

J = 𝜎E 

J = 𝜎 Emaxsin𝜔𝑡 

I

𝐴
 = 𝜎

𝑉𝑚𝑎𝑥

𝑑
 sin𝜔𝑡 

I = 𝐴𝜎
𝑉𝑚𝑎𝑥

𝑑
 sin𝜔𝑡 



I = Imaxsin𝜔𝑡 

Imax = 𝐴𝜎
𝑉𝑚𝑎𝑥

𝑑
 

Irms = 𝐴𝜎
𝑉𝑚𝑎𝑥

√2𝑑
 

Jd = 
𝑑𝐷

𝑑𝑡
 

Jd = 
𝑑(𝜖𝐸)

𝑑𝑡
 

Jd = 𝜖
𝑑(Emaxsin𝜔𝑡)

𝑑𝑡
 

Jd = 𝜖Emax𝜔𝑐𝑜𝑠𝜔𝑡 

Id = 𝐴𝜖
𝑉𝑚𝑎𝑥

𝑑
𝜔𝑐𝑜𝑠𝜔𝑡 

Id = Idmaxcos𝜔𝑡 

Idmax = 𝐴𝜖
𝑉𝑚𝑎𝑥

𝑑
𝜔 

Idrms = 𝐴𝜖
𝑉𝑚𝑎𝑥

√2𝑑
𝜔 

Id is directly proportional to the frequency. Conduction current follows sine law and displacement current 

follows cosine law. 

Differences between conduction and displacement current 

1. Conduction current obeys ohm's law as i= V/Rbut displacement current does not obey ohm's law. 

2. Conduction current density is represented by Jc=σEwhereas displacement currentdensity is given 

by Jd = 
𝑑𝐷

𝑑𝑡
= 𝜀

𝑑𝐸

𝑑𝑡
. 

3. Conduction current is the actual current whereas displacement current is the apparentcurrent 

produced by time varying electric field. 

 

Pointing Vector: 

It is defined as the cross product of the vectors E & H. 

S = EXH 

   = EH sin𝜃 

E = 
𝑣

𝑙
 



H = 
𝐼

2𝜋𝑟
 

S = 
𝑣𝑖

2𝜋𝑟𝑙
 

S = 
𝑃𝑜𝑤𝑒𝑟

𝐴𝑟𝑒𝑎
 

It gives power/unit area and gives magnitude and direction in which power flows in time EMF. The 

direction of power flow at any point is normal to the E and H.  

Poynting Theorem: 

The energy generated per unit volume and second is equal to same of the energy stored in EMF per unit 

volume and second and energy crossed per unit volume and second. 

We know that S = EXH 

∇. S = ∇. (EXH) 

From vector identities 

∇. S = H. ∇XE - E.∇XH 

       = H(-
𝑑𝐵

𝑑𝑡
) – E (J+

𝑑𝐷

𝑑𝑡
) 

       = −𝜇H
𝑑𝐻

𝑑𝑡
 - EJ – 𝜖𝐸 

𝑑𝐸

𝑑𝑡
 

       = −
𝑑

𝑑𝑡
 (

1

2
𝜇𝐻2) – EJ - 

𝑑

𝑑𝑡
 (

1

2
𝜖𝐸2) 

-EJ = ∇. S + 
𝑑

𝑑𝑡
 (

1

2
𝜇𝐻2 +

1

2
𝜖𝐸2) 

-∫ 𝐸𝐽 𝑑𝑣 = ∫ ∇. S dv + ∫
𝑑

𝑑𝑡
(

1

2
𝜇𝐻2 +

1

2
𝜖𝐸2) dv 

∫ ∇. S dv = ∫ S. dS 

-∫ 𝐸𝐽 𝑑𝑣 - ∫
𝑑

𝑑𝑡
(

1

2
𝜇𝐻2 +

1

2
𝜖𝐸2) dv = ∫ ∇. S dv = ∫ S. dS 

This is integral form of Poynting theorem. 

 

 

 


